
Amazon Confidential

Gitlab for contributors

Overview
The Cloud Optimization Success (COS) Guidance team uses Gitlab to write, update, review, and version-
control pre-production content.

We write in Markdown format, and we create one repository per whitepaper (which corresponds to how the
XML is stored in Gitfarm). For more detail, see Well-Architected Gitlab methodology.

Follow these instructions based on your content type to use Gitlab for Well-Architected content creation,
review, and publishing. These instructions differ slightly based on the type of guidance you are authoring.

Framework and pillar guidance
Expand

Lens whitepapers
Expand

Guidance whitepapers
Hide
Each guidance whitepaper has its own individual project in the WA Guidance repository.

Guidance whitepapers differ in a few ways than lenses:

• Guidance whitepapers are not required to be organized by pillar
• Guidance whitepapers do not always have best practices (although they can have best practices if

the authors desire it)

AWS Well-Architected
Cloud Optimization Success
Guidance Team

https://w.amazon.com/bin/view/AWS/Well-Architected/Well-Architected_Content/wa-gitlab
https://w.amazon.com/bin/view/AWS/Well-Architected/Well-Architected_Content/wa-gitlab
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://gitlab.aws.dev/cloud-optimization-success/well-architected-content/wa-guidance
https://gitlab.aws.dev/cloud-optimization-success/well-architected-content/wa-guidance

Creating a new guidance whitepaper
To create a new guidance whitepaper, you need to fork the wa-guidance-template repository:

1. In the wa-guidance-template repository, in the top right-hand corner, choose Fork. NOTE: If you
don't have access, slack @smatzek for access to the Lens guides Gitlab repository.

2. Fill out the following information:
1. Project name: Enter the name of the guidance.
2. Project URL: Select the correct namespace. For guidance, this is cloud-optimization-success/

well-architected-content/wa-guidance .
3. Project slug: Enter a URL slug for the guidance. This should just be the full name of the guid‐

ance whitepaper with dashes instead of spaces. For example, for a guidance whitepaper about
generative AI, this might be something like generative-ai-guidance.

4. Project description: (OPTIONAL) Enter a description for the guidance.
5. Branches to include: All branches.
6. Visibility level: Internal.

3. When all details are filled out, choose Fork project.
4. After the fork completes, you can see your new project created. This is the project where you will

perform your work.
5. Feel free to delete the README.md file once your project is forked.

Working in the guidance whitepaper
Now that you have your guidance project forked, you can begin updating the template files.

There are two primary ways to do this:

1. Update files in Gitlab
2. Update files locally, and push the changes to Gitlab using the CLI or Git application

If you are comfortable cloning a repository and making changes using the CLI, you can ignore these in‐
structions.

Keep in mind the following:

• Guidance whitepapers only have primary template files:
◦ guidance-body-template.md : Contains all required headers, and provides instructions for au‐

thoring guidance.
◦ guidance-section-template.md : Duplicatable template file for any guidance-specific sections

that do not correspond to any set subject. Provides instructions for authoring sections of the
guidance that are unique to each whitepaper.

• Do not change any of the template header elements, including header level or title. You can add
additional headers as needed based on your content.

• For best practices: (OPTIONAL) All best practices should be written in their own file and placed in
the best-practices folder. You can duplicate the best practice template file contained in that folder
for as many best practices as necessary.

• Each best practice title should be prefixed by a guidance-specific prefix.
◦ For example, in a guidance about machine learning, the prefix could be ML. That means that

https://gitlab.aws.dev/cloud-optimization-success/well-architected-content/resources/wa-guidance-template
https://gitlab.aws.dev/cloud-optimization-success/well-architected-content/resources/wa-guidance-template

◦ This should also be reflected in the title of the best practice file.

Updating a file using the Gitlab UI

In guidance papers, because much of the body content is written in one single file, it's best to have authors
work in separate branches so that their edits can be consolidated once they are ready for review.

Alternatively, you can have each author work in sequence and create a merge request when they are com‐
plete with their changes.

Keep this ideology in mind when you are creating branches.

1. Navigate to the file you wish to edit.
2. Open the file.
3. In the Gitlab display window for the file, choose the Edit dropdown, then choose Edit single file.
4. Make your edits in Markdown. It's helpful to keep a guide to Markdown formatting up when you're

editing.
5. Once you are finished editing the file, in the top right-hand corner, choose Commit changes. You will

see a Commit changes dialog pop up.
6. In the Commit changes dialog, enter a commit message that describes the changes you made.
7. Under Branch, choose Commit to a new branch.
8. Enter a branch name for your changes. Usually, this is something like filename-authorname .
9. Choose Commit changes.

Create a merge request for review

Once all of the authors' changes are consolidated:

1. In the left-hand navigation, choose Code, then choose Compare revisions.
2. In the Source dropdown, choose main.
3. In the Target dropdown, choose the branch you wish to merge into main.
4. Choose Compare.
5. Choose Create merge request.
6. Fill out the merge request with the following required information:

1. Title: Enter the best practice title as the title of the merge request.
2. Description: Enter a brief description of the changes that were made to the best practice.
3. Assignee: This can be left blank for now, but should eventually go to the reviewer for your

best practice.
7. After you've filled these details out, choose Create merge request.

Copying section template files in the Gitlab UI

There's no direct way to duplicate a file in the Gitlab UI. Instead:

1. Open the guidance-section-template.md file.
2. In the right-hand corner of the file dialog itself, choose the Download button.
3. Rename the file to the name of the new file. NOTE: Make sure you rename the file! Git doesn't like

having two files with the same name.
4. Navigate one step back to the folder you were previously in.

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Tags:

dropdown.
6. In the Commit changes window:

1. Choose the file to upload.
2. Enter a commit message.
3. Choose Commit to main.

7. Then, choose Commit changes.

Requesting review for your updates
We use merge requests to review and tech edit updates to our documentation.

In merge requests, guidance leads, lens contributors, SMEs, and tech writers can add comments, suggest
changes, and make edits directly to the changes you've made.

To request review for an update, you can simply assign the merge request to the correct person or @ men‐
tion them in the merge request (or both).

For more detail, see Documentation review.

https://w.amazon.com/bin/view/AWS/Well-Architected/Well-Architected_Content/wa-gitlab/
https://w.amazon.com/bin/view/AWS/Well-Architected/Well-Architected_Content/wa-gitlab/

